自然語(yǔ)言處理的過去、現(xiàn)在與未來(lái)

自然語(yǔ)言處理(Natural Language Processing,簡(jiǎn)稱NLP)是計(jì)算機(jī)科學(xué)領(lǐng)域與人工智能領(lǐng)域中的一個(gè)重要方向。它研究能實(shí)現(xiàn)人與計(jì)算機(jī)之間用自然語(yǔ)言進(jìn)行有效通信的各種理論和方法。實(shí)現(xiàn)人機(jī)間自然語(yǔ)言通信意味著要使計(jì)算機(jī)既能理解自然語(yǔ)言文本的意義,也能以自然語(yǔ)言文本來(lái)表達(dá)給定的意圖、思想等;前者稱為自然語(yǔ)言理解,后者稱為自然語(yǔ)言生成。用自然語(yǔ)言與計(jì)算機(jī)進(jìn)行通信,有著十分重要的實(shí)際應(yīng)用意義,也有著革命性的理論意義。
自然語(yǔ)言處理(Natural Language Processing,簡(jiǎn)稱NLP)

NLP的過去

最早的NLP研究工作是機(jī)器翻譯。1949年,美國(guó)工程師韋弗(W. Weaver)首先提出了機(jī)器翻譯的設(shè)計(jì)方案。20世紀(jì)60年代,許多科學(xué)家對(duì)機(jī)器翻譯曾有大規(guī)模的研究工作,耗費(fèi)了巨額費(fèi)用;但他們顯然是低估了自然語(yǔ)言的復(fù)雜性,語(yǔ)言處理的理論和技術(shù)均不成熟,所以進(jìn)展不大。當(dāng)時(shí)的主要做法是存儲(chǔ)兩種語(yǔ)言的單詞、短語(yǔ)對(duì)應(yīng)譯法的大辭典,翻譯時(shí)一一對(duì)應(yīng),技術(shù)上只是調(diào)整語(yǔ)言的同條順序。但日常生活中語(yǔ)言的翻譯遠(yuǎn)不是如此簡(jiǎn)單,很多時(shí)候還要參考某句話前后的意思。

大約90年代開始,NLP領(lǐng)域發(fā)生了巨大的變化。這種變化的兩個(gè)明顯的特征是:(1)對(duì)系統(tǒng)的輸入,要求研制的NLP系統(tǒng)能處理大規(guī)模的真實(shí)文本,而不是如以前的研究性系統(tǒng)那樣,只能處理很少的詞條和典型句子。只有這樣,研制的系統(tǒng)才有真正的實(shí)用價(jià)值。(2)對(duì)系統(tǒng)的輸出,鑒于真實(shí)地理解自然語(yǔ)言是十分困難的,對(duì)系統(tǒng)并不要求能對(duì)自然語(yǔ)言文本進(jìn)行深層的理解,但要能從中抽取有用的信息。例如,對(duì)自然語(yǔ)言文本進(jìn)行自動(dòng)地提取關(guān)鍵詞、摘要等。

同時(shí),由于強(qiáng)調(diào)了“大規(guī)模”和“真實(shí)文本”,因此兩方面的基礎(chǔ)性工作也得到了重視和加強(qiáng):(1)大規(guī)模真實(shí)語(yǔ)料庫(kù)的研制。大規(guī)模的經(jīng)過不同深度加工的真實(shí)文本的語(yǔ)料庫(kù),是研究自然語(yǔ)言統(tǒng)計(jì)性質(zhì)的基礎(chǔ)。沒有它們,統(tǒng)計(jì)方法只能是無(wú)源之水。(2)大規(guī)模、信息豐富的詞典的編制工作。規(guī)模為幾萬(wàn)、十幾萬(wàn)、甚至幾十萬(wàn)詞,含有豐富的信息(如包含詞的搭配信息)的計(jì)算機(jī)可用詞典對(duì)NLP的重要性是很明顯的。

NLP的現(xiàn)在

數(shù)據(jù)系統(tǒng)的輸入與輸出這兩個(gè)特征在NLP的諸多領(lǐng)域都有所體現(xiàn), 其發(fā)展直接促進(jìn)了計(jì)算機(jī)自動(dòng)檢索技術(shù)的出現(xiàn)和興起。實(shí)際上, 隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展, 以海量計(jì)算為基礎(chǔ)的機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘等技術(shù)的表現(xiàn)也愈發(fā)優(yōu)異。自然語(yǔ)言處理之所以能夠度過“寒冬”, 再次發(fā)展, 也是因?yàn)榻y(tǒng)計(jì)科學(xué)與計(jì)算機(jī)科學(xué)的不斷結(jié)合, 才讓人類甚至機(jī)器能夠不斷從大量數(shù)據(jù)中發(fā)現(xiàn)“特征”并加以學(xué)習(xí)。不過要實(shí)現(xiàn)對(duì)自然語(yǔ)言真正意義上的理解,僅僅從原始文本中進(jìn)行學(xué)習(xí)是不夠的,我們需要新的方法和模型。

目前存在的問題主要有兩個(gè)方面:一方面,迄今為止的語(yǔ)法都限于分析一個(gè)孤立的句子,上下文關(guān)系和談話環(huán)境對(duì)本句的約束和影響還缺乏系統(tǒng)的研究,因此分析歧義、詞語(yǔ)省略、代詞所指、同一句話在不同場(chǎng)合或由不同的人說出來(lái)所具有的不同含義等問題,尚無(wú)明確規(guī)律可循,需要加強(qiáng)語(yǔ)用學(xué)的研究才能逐步解決。另一方面,人理解一個(gè)句子不是單憑語(yǔ)法,還運(yùn)用了大量的有關(guān)知識(shí),包括生活知識(shí)和專門知識(shí),這些知識(shí)無(wú)法全部貯存在計(jì)算機(jī)里。因此一個(gè)書面理解系統(tǒng)只能建立在有限的詞匯、句型和特定的主題范圍內(nèi);計(jì)算機(jī)的貯存量和運(yùn)轉(zhuǎn)速度大大提高之后,才有可能適當(dāng)擴(kuò)大范圍。

無(wú)論實(shí)現(xiàn)自然語(yǔ)言理解,還是自然語(yǔ)言生成,都遠(yuǎn)不如人們?cè)瓉?lái)想象的那么簡(jiǎn)單,而是十分困難的。從現(xiàn)有的理論和技術(shù)現(xiàn)狀看,通用的、高質(zhì)量的NLP系統(tǒng),仍然是較長(zhǎng)期的努力目標(biāo)。正如中國(guó)知名學(xué)者周海中(筆名“周求知”)曾在《自然語(yǔ)言理解的研究歷程》一文中指出的“雖然現(xiàn)今市場(chǎng)上出現(xiàn)不少可以進(jìn)行一定自然語(yǔ)言處理的商品軟件,但要想讓機(jī)器能像人類那樣自如地運(yùn)用自然語(yǔ)言,仍是一項(xiàng)長(zhǎng)遠(yuǎn)而艱巨的任務(wù)。”造成困難的根本原因是自然語(yǔ)言文本和對(duì)話的各個(gè)層次上廣泛存在的各種各樣的歧義性或多義性。

NLP的未來(lái)

由于語(yǔ)言學(xué)、語(yǔ)言工程、認(rèn)知科學(xué)等主要局限于實(shí)驗(yàn)室,目前來(lái)看數(shù)據(jù)處理可能是NLP應(yīng)用場(chǎng)景最多的一個(gè)發(fā)展方向。實(shí)際上, 自從進(jìn)入大數(shù)據(jù)時(shí)代, 各大平臺(tái)就沒有停止過對(duì)用戶數(shù)據(jù)的深度挖掘。要想提取出有用的信息, 僅提取關(guān)鍵詞、統(tǒng)計(jì)詞頻等是遠(yuǎn)遠(yuǎn)不夠的, 必須對(duì)用戶數(shù)據(jù) (尤其是發(fā)言、評(píng)論等)進(jìn)行語(yǔ)義上的理解。另外,利用離線大數(shù)據(jù)統(tǒng)計(jì)分析的方法進(jìn)行NLP任務(wù)的研究是目前非常有潛力的一種研究范式,尤其是谷歌、推特、百度等大公司在這類應(yīng)用上的成功經(jīng)驗(yàn),引領(lǐng)了目前大數(shù)據(jù)研究的浪潮。

NLP是為各類企業(yè)及開發(fā)者提供的用于文本分析及挖掘的核心工具,已經(jīng)廣泛應(yīng)用在電商、文化娛樂、金融、物流等行業(yè)客戶的多項(xiàng)業(yè)務(wù)中。它可幫助用戶搭建內(nèi)容搜索、內(nèi)容推薦、輿情識(shí)別及分析、文本結(jié)構(gòu)化、對(duì)話機(jī)器人等智能產(chǎn)品,也能夠通過合作,定制個(gè)性化的解決方案。由于理解自然語(yǔ)言,需要關(guān)于外在世界的廣泛知識(shí)以及運(yùn)用操作這些知識(shí)的能力,所以NLP也被視為解決強(qiáng)人工智能的核心問題之一,其未來(lái)一般也因此密切結(jié)合人工智能發(fā)展。

長(zhǎng)文本的智能解析是頗具挑戰(zhàn)性的任務(wù),如何從紛繁多變、信息量龐雜的冗長(zhǎng)文本中獲取關(guān)鍵信息,一直是文本領(lǐng)域難題;這一難題有待解決。另外,訓(xùn)練NLP文本解析人工智能系統(tǒng)需要采集大量多源頭數(shù)據(jù)集,對(duì)科學(xué)家來(lái)說是一項(xiàng)持續(xù)的挑戰(zhàn):需要使用最新的深度學(xué)習(xí)模型,模仿人類大腦中神經(jīng)元的行為,在數(shù)百萬(wàn)甚至數(shù)十億的注釋示例中進(jìn)行訓(xùn)練來(lái)持續(xù)改進(jìn)。當(dāng)下一種流行的NLP解決方案是預(yù)訓(xùn)練,它改進(jìn)了對(duì)未標(biāo)記文本進(jìn)行訓(xùn)練的通用語(yǔ)言模型,以執(zhí)行特定任務(wù)。

總而言之,NLP 的目標(biāo)是讓計(jì)算機(jī)在理解語(yǔ)言上像人類一樣智能;它的最終目標(biāo)是彌補(bǔ)人類交流(自然語(yǔ)言)和計(jì)算機(jī)理解(機(jī)器語(yǔ)言)之間的差距。我們完全可以相信,隨著計(jì)算機(jī)科學(xué)和人工智能的發(fā)展,NLP對(duì)未來(lái)科技的進(jìn)步將做出不可磨滅的貢獻(xiàn)。

責(zé)編:微科普

分享到:

>相關(guān)科普知識(shí)

日本女v片一区二区,公侵犯人妻一区二区,国产亚洲中文日本不卡2区,91久国产成人在线观. www.sucaiwu.net